Inference for High-dimensional Exponential Family Graphical Models
نویسندگان
چکیده
Probabilistic graphical models have been widely used to model complex systems and aid scientific discoveries. Most existing work on highdimensional estimation of exponential family graphical models, including Gaussian and Ising models, is focused on consistent model selection. However, these results do not characterize uncertainty in the estimated structure and are of limited value to scientists who worry whether their findings will be reproducible and if the estimated edges are present in the model due to random chance. In this paper, we propose a novel estimator for edge parameters in an exponential family graphical models. We prove that the estimator is √ n-consistent and asymptotically Normal. This result allows us to construct confidence intervals for edge parameters, as well as, hypothesis tests. We establish our results under conditions that are typically assumed in the literature for consistent estimation. However, we do not require that the estimator consistently recovers the graph structure. In particular, we prove that the asymptotic distribution of the estimator is robust to model selection mistakes and uniformly valid for a large number of data-generating processes. We illustrate validity of our estimator through extensive simulation studies.
منابع مشابه
t-divergence Based Approximate Inference
Approximate inference is an important technique for dealing with large, intractable graphical models based on the exponential family of distributions. We extend the idea of approximate inference to the t-exponential family by defining a new t-divergence. This divergence measure is obtained via convex duality between the log-partition function of the t-exponential family and a new t-entropy. We ...
متن کاملPropagation Algorithms for Variational Bayesian Learning
Variational approximations are becoming a widespread tool for Bayesian learning of graphical models. We provide some theoretical results for the variational updates in a very general family of conjugate-exponential graphical models. We show how the belief propagation and the junction tree algorithms can be used in the inference step of variational Bayesian learning. Applying these results to th...
متن کاملExponential Family Predictive Representations of State
In order to represent state in controlled, partially observable, stochastic dynamical systems, some sort of sufficient statistic for history is necessary. Predictive representations of state (PSRs) capture state as statistics of the future. We introduce a new model of such systems called the “Exponential family PSR,” which defines as state the time-varying parameters of an exponential family di...
متن کاملAppendix: A Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models
The graphical model MLE can be expressed as a backward mapping[1] in an exponential family distribution that computes the model parameters corresponding to some given (sample) moments. There are however two caveats with this backward mapping: it is not available in closed form for many classes of models, and even if it were available in closed form, it need not be welldefined in high-dimensiona...
متن کاملElementary Estimators for Graphical Models
We propose a class of closed-form estimators for sparsity-structured graphical models, expressed as exponential family distributions, under high-dimensional settings. Our approach builds on observing the precise manner in which the classical graphical model MLE “breaks down” under high-dimensional settings. Our estimator uses a carefully constructed, well-defined and closed-form backward map, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016